Russian Scientists Have Studied Marine Worm with Unique Spermatozoa
Russian scientists at A.V. Zhirmunsky National Scientific Centre of Marine Biology, HSE University, and Moscow State University have studied Phoronis embryolabi, a rare species of marine invertebrate found in the waters of the Sea of Japan. This species is notable for its unique reproductive system, which includes the development of larvae within the parent’s body and an unusual sperm structure. The study's findings contribute to our understanding of the evolutionary adaptations of marine organisms to extreme conditions. The study has been published in Zoologischer Anzeiger.
Phoronis embryolabi is a small marine worm that is viviparous, meaning it gives birth to live young, with larvae developing inside the parent’s body. This is an important adaptation for Phoronis embryolabi, which lives as a commensal organism—a type of symbiotic relationship where the commensal benefits while the host remains unaffected—in the holes of burrowing shrimp. It has been discovered that the reproductive process in this species involves the formation of spermatozoa with an unusual structure.
Spermatozoa are filamentous cells capable of moving within the confined spaces of the body. They develop in vasoperitoneal tissue (VPT) that surrounds blood vessels. 'This structure enables spermatozoa to move efficiently through narrow spaces filled with cells and embryos,' according to Elena Temereva, Professor of the Joint Department with RAS Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, HSE Faculty of Biology and Biotechnology.
Unlike other phoronid species, whose spermatozoa are V-shaped, Phoronis embryolabi’s spermatozoa maintain an elongated shape throughout all stages of maturity. The flagellum, essential for movement, is closely aligned with the cell body, which aids in movement through the narrow spaces of the body cavity. This is important, because the numerous embryos and other cells developing inside the body create additional challenges for sperm movement.
Sperm cells in Phoronis embryolabi, known as introsperm, possess unique adaptations typical of species with internal fertilisation. To reach the eggs, they must navigate through dense layers of cells and squeeze in the narrow spaces within the body. The researchers found that these spermatozoa are equipped with a collar around the base of the flagellum, which, along with undulating movements, enables them to move through the densely packed inner spaces of the animal. This movement resembles that of certain single-cell parasites, such as trypanosomes, which use similar mechanisms to move through a viscous medium.
For comparison, in other phoronid species, such as Phoronis pallida and Phoronopsis harmeri, introsperm are V-shaped cells composed of two parts: one part is the flagellum, while the other contains the nucleus and mitochondria. In Phoronis embryolabi, all components of the sperm are closely interconnected, which enhances their ability to move efficiently through narrow spaces. In addition, their spermatozoa are shorter than those of other species, which may also be an adaptation to the habitat conditions.
The study of spermatogenesis and sperm structure in Phoronis embryolabi provides valuable insights into how organisms adapt to extreme conditions. This information helps deepen our understanding of the evolution of reproductive biology in marine invertebrates and the factors that have influenced the development of complex reproductive strategies.
The unique adaptations of spermatozoa in Phoronis embryolabi are a crucial component of this species' survival strategy. The ability to move through narrow spaces and fertilise eggs in a body filled with embryos and other cells is an example of a successful evolutionary adaptation.
The research was carried out with support from the Russian Science Foundation.
See also:
Mortgage and Demography: HSE Scientists Reveal How Mortgage Debt Shapes Family Priorities
Having a mortgage increases the likelihood that a Russian family will plan to have a child within the next three years by 39 percentage points. This is the conclusion of a study by Prof. Elena Vakulenko and doctoral student Rufina Evgrafova from the HSE Faculty of Economic Sciences. The authors emphasise that this effect is most pronounced among women, people under 36, and those without children. The study findings have been published in Voprosy Ekonomiki.
Scientists Discover How Correlated Disorder Boosts Superconductivity
Superconductivity is a unique state of matter in which electric current flows without any energy loss. In materials with defects, it typically emerges at very low temperatures and develops in several stages. An international team of scientists, including physicists from HSE MIEM, has demonstrated that when defects within a material are arranged in a specific pattern rather than randomly, superconductivity can occur at a higher temperature and extend throughout the entire material. This discovery could help develop superconductors that operate without the need for extreme cooling. The study has been published in Physical Review B.
Scientists Develop New Method to Detect Motor Disorders Using 3D Objects
Researchers at HSE University have developed a new methodological approach to studying motor planning and execution. By using 3D-printed objects and an infrared tracking system, they demonstrated that the brain initiates the planning process even before movement begins. This approach may eventually aid in the assessment and treatment of patients with neurodegenerative diseases such as Parkinson’s. The paper has been published in Frontiers in Human Neuroscience.
Civic Identity Helps Russians Maintain Mental Health During Sanctions
Researchers at HSE University have found that identifying with one’s country can support psychological coping during difficult times, particularly when individuals reframe the situation or draw on spiritual and cultural values. Reframing in particular can help alleviate symptoms of depression. The study has been published in Journal of Community Psychology.
Scientists Clarify How the Brain Memorises and Recalls Information
An international team, including scientists from HSE University, has demonstrated for the first time that the anterior and posterior portions of the human hippocampus have distinct roles in associative memory. Using stereo-EEG recordings, the researchers found that the rostral (anterior) portion of the human hippocampus is activated during encoding and object recognition, while the caudal (posterior) portion is involved in associative recall, restoring connections between the object and its context. These findings contribute to our understanding of the structure of human memory and may inform clinical practice. A paper with the study findings has been published in Frontiers in Human Neuroscience.
Researchers Examine Student Care Culture in Small Russian Universities
Researchers from the HSE Institute of Education conducted a sociological study at four small, non-selective universities and revealed, based on 135 interviews, the dual nature of student care at such institutions: a combination of genuine support with continuous supervision, reminiscent of parental care. This study offers the first in-depth look at how formal and informal student care practices are intertwined in the post-Soviet educational context. The study has been published in the British Journal of Sociology of Education.
AI Can Predict Student Academic Performance Based on Social Media Subscriptions
A team of Russian researchers, including scientists from HSE University, used AI to analyse 4,500 students’ subscriptions to VK social media communities. The study found that algorithms can accurately identify both high-performing students and those struggling with their studies. The paper has been published in IEEE Access.
HSE Scientists: Social Cues in News Interfaces Build Online Trust
Researchers from the HSE Laboratory for Cognitive Psychology of Digital Interface Users have discovered how social cues in the design of news websites—such as reader comments, the number of reposts, or the author’s name—can help build user trust. An experiment with 137 volunteers showed that such interface elements make a website appear more trustworthy and persuasive to users, with the strongest cue being links to the media’s social networks. The study's findings have been published in Human-Computer Interaction.
Immune System Error: How Antibodies in Multiple Sclerosis Mistake Their Targets
Researchers at HSE University and the Institute of Bioorganic Chemistry of the Russian Academy of Sciences (IBCh RAS) have studied how the immune system functions in multiple sclerosis (MS), a disease in which the body's own antibodies attack its nerve fibres. By comparing blood samples from MS patients and healthy individuals, scientists have discovered that the immune system in MS patients can mistake viral proteins for those of nerve cells. Several key proteins have also been identified that could serve as new biomarkers for the disease and aid in its diagnosis. The study has been published in Frontiers in Immunology. The research was conducted with support from the Russian Science Foundation.
Scientists Develop Effective Microlasers as Small as a Speck of Dust
Researchers at HSE University–St Petersburg have discovered a way to create effective microlasers with diameters as small as 5 to 8 micrometres. They operate at room temperature, require no cooling, and can be integrated into microchips. The scientists relied on the whispering gallery effect to trap light and used buffer layers to reduce energy leakage and stress. This approach holds promise for integrating lasers into microchips, sensors, and quantum technologies. The study has been published in Technical Physics Letters.