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Operation of spaser-based nanolaser is considered

theoretically. We establish that the dependence of

the lasing frequency undergoes red-shift with the in-

crease of the pumping intensity. We propose, that

the mechanism leading to the red-shift is based on

space deformation of the lasing mode, which is in-

duced by inhomogeneous depletion of the gain me-

dia. We develop general analytical scheme which

allows to account the mode deformation.

1 Introduction

In this work we theoretically investigate lasing
properties for the simplest geometry used in [1] in
a steady-state regime. The main goal of the in-
vestigation is to establish dependence of the las-
ing frequency on the lasing intensity. The effect
can be observed for the data presented in [1, 2],
although the phenomenon was not marked in the
paper. Accordingly to our analysis, the shift of the
lasing frequency is connected with spatial deforma-
tion of the laser working mode due to depletion of
the gain media. For spaser, the quality factor is
not very large, and the depletion leads to consider-
able alternation in effective dielectric permittivity
of the gain media, that causes the deformation of
the lasing mode. It should be noted, that previous
theoretical works (see e.g. [3, 7, 4, 8, 9]) were built
with assumption that the spatial structure of the
lasing mode is invariable.

2 Investigated model

We assume the following design of the spaser:
metallic particle of radius a is coated by a shell of
thickness h, in which dye molecules are embedded,
see Fig. 1. The system is permanently illuminated
by electromagnetic wave of frequency ωp and in-
tensity Ip which pumps the active media, exciting
the dye molecules from ground state |g〉 to pumped
state |p〉, see Fig. 1. Laser transition occurs be-
tween upper and lower laser states |u〉 and |l〉 re-
spectively, the frequency of the spontaneous emis-
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Figure 1: The model under research

sion is ωse. We assume, that the dye molecules fast
transit from |p〉 to |u〉 and from |l〉 to |g〉 by means
of phonon emission or excitation of any other inter-
nal degrees of freedom. Note here, that our method
can be generalized onto more complex geometries,
e.g. [2], here our aim is to uncover the main features
of the laser generation in spasers.

Let us first determine equation, which governs
spatial structure of the lasing mode. Due to the
size of the system is much less than both the skin
depth in the metal of the core and the wavelength
in the material of the shell, one can use quasistatic
equation on the electric potential Φ

div(ε̂(r) gradΦ) = 0, (1)

where ε̂(r) is local value of dielectric permittivity
of the media. Eq. (1) with the condition Φ → 0 far
from the spaser determines the structure of the las-
ing mode. The permittivity is εm inside the metal
core, and εo in outer space. Inside the shell, it is
ε̂s = ε(0)

s + ε̂as , where ε(0)
s is the constant for shell

material without dye molecules and ε̂as stems from
the contribution produced by the molecules. Po-
larization Pa = ε̂asE/(4π) is associated with the
dye molecules, it is generally nonlinear function of
the electric field. We describe the state of the dye
molecules in terms of density matrix ρ̂, which de-
pends on position r and the direction of the dipole
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moment matrix element d = 〈u|d̂|l〉, where d̂ is
the dipole moment quantum operator. The magni-
tude of the dipole moment d is the same for all dye
molecules but its direction is random and frozen for
each molecule. The polarization is determined by
non-diagonal element ρul = exp(−iωLt)ρ of the ma-
trix, Pa(r) = n〈d∗ρ〉d, where n is the dye molecules
density, angle brackets with low index ‘d’ mean av-
eraging over random direction of the dipole mo-
ment d and asterisk stands for complex conjuga-
tion. Hereinafter, nonlinear operator div ε̂(r)grad
is referred as Ĥ for brevity.
To describe evolution of dye molecules, let us first

restrict ourselves by two-level system model, keep-
ing only lasing states |u〉 and |l〉 in consideration.
In the case, there is only three independent param-
eters in the truncated density matrix, inverse pop-
ulation N = ρuu − ρll and complex value of non-
diagonal element ρ, which evolution is governed by
the system of equations

∂tN = −2 Im [Ωρ∗]− (N −Ns)/τ, (2)

∂tρ = −Γ∆ρ− iNΩ/2, (3)

where Γ∆ = Γ − i∆ and Ω = (dE)/~, thus |Ω| is
Rabi transition rate (frequency). Equations (2, 3)
are written in rotating wave approximation (see e.g.
[5, 6]), detuning of the light field ∆ = ωL − ωse is
assumed to be small, ∆ ≪ ωse. Phase decorrela-
tion rate Γ stems from homogeneous and inhomo-
geneous broadening of the transition between the
laser states, whereas equilibrium (i.e. at absence the
field of the lasing mode) inverse population Ns and
relaxation time τ are determined by the pumping
wave intensity Ip. When the generation is estab-
lished, one can drop temporal dependencies of N
and ρ in (2), (3) and find stationary values of the
variables, which are N = Ns/(1 + τΓ|Ω/Γ∆|

2) and
ρ = −iNΩ/(2Γ∆).
Let us now establish dependence of the parame-

ters τ and Ns involved in two-level system model
(2) on intensity of pumping wave. For the pur-
pose, we expand the two-level system up to four-
level system by adding sector concerning two quan-
tum states |g〉 and |p〉, which are brought into play
in pumping process. Now we have two two-level
subsystems, |g〉,|p〉 and |l〉,|u〉 which are connected
with each other by fast nonradiative transitions
|p〉 → |u〉 and |l〉 → |g〉 having rates Γu and Γl

correspondingly. Stationary solutioin for the four-
level system leads us to the conclusion that the pa-
rameters of the two-level system, considered in (2)

are Ns = 1/(1 + 2γΓp/Ω
2
p) and 1/τ = 2γ + Ω2

p/Γp,
where Ωp = |(dp · Ep)|/~ is Rabi rate in pumping
sector, the corresponding dipole moment matrix el-
ement dp = 〈p|d̂|g〉, Ep is the electric field of the
pumping wave and Γp is phase decorrelation rate.
Here, we assumed the nonradiative rates Γu and Γl

are order of the phase decorrelation rates Γ and Γp.

3 Frequency shift

The gain correction ε̂as(r) to the shell permittiv-
ity constant decreases with magnitude of electric
field E(r) and increases with pumping intensity Ip.
Above the threshold, ε̂as becomes nonuniform over
space since the electric field intensity of the lasing
mode. The stationary amplitude of lasing mode
is determined by balance between Ohmic losses in-
side the metal core of the spaser and pumping ob-
tained from the gain media. This means that ‘aver-
age’ over space value of ε̂as at stationary generation
should be the same as at threshold point. It is
convenient first to establish spatial structure of the
lasing mode, to determine the meaning of the ‘av-
eraging’ over space for ε̂as . Let us denote Φsp(r) the
electric field potential of the mode, when the pump-
ing and the Ohmic losses inside the metal core are
zero, that is when the dielectric permittivity εsp(r)
in whole space is pure real. We denote the corre-
sponding operator involved in (1) as Ĥsp, which is
liner for the case. We assume that the quality fac-
tor Q of the spaser as a resonator is much greater
than unity [1]. This means, that both the correc-
tion ε̂as to the shell permittivity constant and the
imaginary part of the metal dielectric permittivity
ε′′m are relatively small as 1/Q. Symmetry and self-
conjugacy of the unperturbed operator Ĥsp allows
us to use the technique developed in quantum me-
chanics for perturbation theory.

As the intensity of the lasing mode grows, the
pumping rate becomes nonuniform over the volume
of the dielectric shell due to nonuniform depletion
of the dye molecules. As the result, the spatial
structure of the lasing mode undergoes slight al-
ternation with the intensity. The alternation re-
sults in deviation of the lasing frequency from its
threshold value ωL,th, now it is ωL = ωL,th + δL.
To evaluate the deviation δL, one should develop
the perturbation theory in small losses up to sec-
ond order. First, we find the correction δΦ to the
electric field spatial structure using the equation
ĤspδΦ = −δĤΦsp, which is valid for first correc-
tion δΦ for the electric field potential. After the
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correction is found, one should use real part of
the condition

∫
Φ∗δĤΦd3r +

∫
δΦ∗ĤspδΦd

3r = 0,
which means that the correction up to the second
order in 1/Q for Eq. (1) is zero. The developed
method allows to determine the lasing frequency in
any point of the above-threshold regime. The mag-
nitude of the frequency shift can serve as a criterion
for changing the structure of the lasing mode.

The numerical results are presented in Fig. 2. It
is given for a = 7nm, h = 15nm, ε0s = 2.586, εo =
1.77, the permittivity of the outer space ε0 = 1.77
according to experimental work [1], ωse = 525nm
and ~Γ = 0.25 eV. Permittivity for gold is taken
from [10]. The experimental data of [1] suggests
that the phenomenon of frequency shift occurs, but
this issue was not investigated in details.

Let us compare the value of secondary frequency
shift with the the spaser linewidth. The spectrum
Iω of the lasing mode can be found in a stan-
dard way using the model of phase diffusion [5],
the linewidth ΓL of the spectrum can be estimated
as ΓL ∼ Γsp/nL well above threshold, where nL is
the number of surface plasmon quanta excited in
the lasing mode and Γsp = ε′′m/(∂ε

′
m/∂ω). This

means that the spectrum width becomes less than
the secondary frequency shift for sufficiently large
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Figure 2: The dependence of the lasing

frequency on the pump intensity. Main
panel, the dependence of the lasing frequency
shift δL from the threshold value ωL,th on
the inverse pump intensity normalized to the
threshold. On the inset, the asymptotic value
of the frequency shift at the limit of strong
pump intensities as a function of inverse value
of the inverse population at the threshold,
1/Ns,th.

pumping, which is found above. So, in this case the
analyzed effect becomes significant compared with
the width of the spectral line.

4 Conclusion

Thus, the paper presents a theoretical framework
describing spaser. All results can be obtained for
arbitrary geometry of the system. We have devel-
oped a new approach to the problem of spaser in
above-threshold regime. The key idea is to solve
Maxwell’s equations in the quasistatic approxima-
tion using perturbation theory approach with the
help of quantum-mechanical formalism. In particu-
lar, we found that the shift of the lasing frequency
is associated with change in the structure of the
mode. This result is interesting by itself, in view
of the importance for the frequency of radiation,
and in view of its practical application. The effect
arises, if the Q-factor of the lasing mode is not very
large and the electric field distribution of the lasing
mode is nonuniform. In the case mode structure
depends on the distribution of the pumping, which
becomes nonuniform when the intensity of the las-
ing mode rises well above threshold.
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