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1. Motivation

Recently, solenoidal currents generated by surface waves were studied experimentally [1-3]. It was
shown that statistical properties of horizontal motion are similar to statistics of 2d turbulence, despite
the fact that velocity field was substantially 3d. There is no explanation to the observation, even the
generation mechanism of solenoidal currents from surface waves remained so far obscure. Here we
present a first-ever theory explaining the generation mechanism and check it experimentally.
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(a) Experimental setup, (b) regular pattern of interacting vortices, (c) statistically stationary distribution of vortices.

What is our aim?
I Some surface waves are excited on a fluid surface, we know the elevation h(t, x, y).
I We want to find vertical component of the vorticity, based on the Navier-Stokes equation.

2. Linear Approximation & Qualitative Explanation

The vorticity is directed along the surface and concentrated in a thin viscous sublayer
near the fluid surface:

$α = 2εαβ exp(κ̂z)∂β∂th +O(γ2), κ̂2 = ∂t/ν + k̂2.

To find the vertical vorticity we should take into account the main nonlinear contribution:

One can roughly say that the surface tilt produces a tilt of the vorticity in the viscous
sublayer as well.

Since the horizontal vorticity is independent of viscosity on a fluid surface, the vertical vortic-
ity will be also independent of viscosity though it is produced by the viscous mechanism.

3. Nonlinear Vorticity Generation

Up to the second-order the vertical vorticity obeys the following equation:

∂t$z − ν∇2$z = $α∂αvz.

The right-hand side corresponds to the rotation of horizontal vorticity by the velocity field. The boundary
condition posed at z = 0:

∂z$z = ∂αh∂z$α − εαγ(∂αvβ + ∂βvα)∂β∂γh.

Monochromatic pumping:

$z(z) = 2εαβ(e
κ̂z∂β∂th)(e

k̂z∂αh) + 2εαβk̂
−1ek̂z(∂αh∂β∂tk̂h + ∂α∂γh∂β∂γ∂tk̂

−1h).

First term — tilt of $α due to ∂αh (penetrates on a distance γ/k). Second term — spreading of rotated
vorticity into the bulk. Last term is related to the non-zero curvature of the surface (penetrates on a
distance 1/k).

The theory is correct if higher-order nonlinear terms are small compared to the kept ones⇔ kh� γ.

4. Stokes Drift

We restore the velocity field analyzing the motion of tracers located at fluid surface. The
equation of motion is

dX

dt
= v(X, t),

and near some point x0 we can expand a velocity field in Taylor series. Up to the second-
order we obtain

δX0 =

∫
v(x0, h(x0, t))dt, δX1 =

∫
Ĝ · δX0dt,

where Ĝ is a velocity gradient tensor.

Measured vorticity for orthogonal plane waves:

$L = εαβ∂αvβ(x, h(x, t)) = $z(0) + εαβ∂αh∂zvβ(x, 0).

5. Nearly Square Cell with Symmetrical Walls

a) b)

(a) The waves are excited due to water meniscus formed near the walls. The surface elevation can be modeled as

h = H1 cos(ωt) cos(kx) +H2 cos(ωt + ψ) cos(ky),

the phase shift ψ is related to the cell asymmetry. For the measured vorticity we obtain

$L = −(1 +
√
2) sinψH1H2ωk

2 sin(kx) sin(ky).

The Stokes drift correction has the same spatial structure as $z(0), but with the prefactor 2 +
√
2 replaced by −1. Their

sum gives the answer which is written above.

(b) Vorticity for different pumping amplitudes plotted as a function of the tilt amplitude kH. The line corresponds to the
dependence $z ∝ (kH)2 and it proves that the vorticity is generated by the second-order nonlinearity.

6. Square Cell with Asymmetrical Walls

Left and bottom walls are slightly lower than others. The water level is ad-
justed to produce mainly two running waves from the lower walls. The surface
elevation can be modeled as

h = H1 cos(ωt− kx) +H2 cos(ωt− ky)
and for the measured vorticity we obtain

$L = −(1 +
√
2)H1H2ωk

2 sin(kx− ky).
The direction of particles’ motion cannot be explained by the Stokes drift
alone, since this mechanism moves particles in the opposite direction.

7. Square Cell with Symmetrical Walls: Wave Damping

Vorticity $L in a perfectly square cell where the phase shift ψ � 1 due to the cell symmetry:
(a) experiment and (b) theory.

Taking into account the wave damping we can model the surface elevation as

h =
H1

2

[
cos(kx− ωt)e−αx + cos(kx + ωt)eαx

]
+
H2

2

[
cos(ky − ωt)e−αy + cos(ky + ωt)eαy

]
and for the measured vorticity we obtain

$L =
(1 +
√
2)

2
H1H2ωk

2
[
sin(kx− ky) sinh(αx + αy)− sin(kx + ky) sinh(αx− αy)

]
.

8. Conclusion

I Suggested theory can be used to analyze the solenoidal motion on the ocean surface.
I Practical Application: the theory can be used to design solenoidal currents (e.g., for mixing problems).
I Our results allow to understand better the phenomenon of surface turbulence driven by Faraday waves.
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